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1 Introduction

Clothing assistance is a basic and important as-

sistance activity in the daily life of the elderly and

disabled people. However, robotic clothing assistance

is still considered an open problem by most robotics

researchers. Design of a robust framework involves re-

liable cloth state estimation in real-time and a motor

skills learning framework that can detect and adapt to

various failure scenarios. Existing studies do not ex-

plicitly handle these challenges and perform point-to-

point motion planning in an offline manner for cloth-

ing assistance [1],[2]. An alternate approach is to for-

mulate robotic clothing assistance as a reinforcement

learning problem wherein the robot learns to recover

from failure scenarios and adapt to new settings from

experience.

Tamei et al. [3] have proposed a reinforcement

learning (RL) framework for clothing assistance with

a dual-arm robot as the agent and a mannequin as

the subject. The clothing task was to cloth the man-

nequin with a T-shirt which is initially on the man-

nequin’s hands. The framework was formulated using

low dimensional representations for the state and pol-

icy. The state was represented using topology coor-

dinates which captured the relationship between the

human and cloth extremities. The dual-arm robot’s

trajectory was parametrized using via-points which

were obtained using a minimum jerk criterion. The

policy was initialized using kinesthetic demonstration

for a particular posture and the framework could suc-

cessfully learn a policy for an unseen posture.

A limitation in the above framework is that pol-

icy search is performed in the kinematic space which is

considerably high dimensional for a 7 degree of free-

dom (DOF) dual-arm robot. For tractable learning

time, policy update was done using finite difference

policy gradient applied to a single via-point of a sin-

gle joint in each robot arm. This severely constrained

the generalization capability to very different environ-

mental settings such as major changes in the subject’s

posture or using different clothing article. To address

this problem, we consider an alternate representation

that is more flexible and suitable for robust learning

of motor-skills. We propose the use of dimensional-

ity reduction (DR) to learn a low-dimensional latent

space that encodes clothing skills without losing any

generalization capability.

In this study, we propose an efficient repre-

sentation of motor skills that relies on the use of

Fig.1 Clothing Assistance framework: Dual-arm
robot clothing soft-mannequin with T-shirt.

Bayesian Gaussian Process Latent Variable Model

(BGPLVM) [4]. BGPLVM is capable of learning

a data-efficient latent space for clothing tasks per-

formed by a dual-arm robot. Representation of cloth-

ing skills in a low-dimensional space enables the use

of expressive policy update rules for generalization

to very different settings. We apply our proposed

method to a clothing assistance setup as shown in

Figure 1. We demonstrate that the learned space

generates robot trajectories that maintain task space

constraints required for clothing tasks. We further

present the design of a real-time controller from a BG-

PLVM latent space to a dual-arm robot. The experi-

mental results indicate a promising policy representa-

tion with reinforcement learning that can be used for

robotic clothing assistance.

The rest of the paper is structured as follows.

Section 2 provides an overview of related studies. The

proposed framework is presented in Section 3. Sec-

tion 4 includes experimental results and Section 5 con-

cludes the paper with directions for future work.

2 Related Work
Motor skills learning for robots involves an agent

interacting with a partially observable environment

in continuous state and action spaces. Usually pol-

icy search reinforcement learning is applied wherein

an optimal policy is learned by searching within the

policy space. Reinforcement Learning usually suffer

from the curse of dimensionality when applied to real-

world situations as the search space grows exponen-

tially. Existing frameworks do not scale well to high-

dimensionality and usually take a long learning time

without human-specified constraints. An efficient ap-



proach is the use of dimensionality reduction (DR)

along with reinforcement learning (RL). The combi-

nation of DR leads to a tractable search space for RL

resulting in a faster learning time. There have been

several studies in this direction in the recent years.

Bitzer et al. [5] proposed a RL framework wherein

DR was used as a preprocessing step to extract the

problem structure from task-specific robot postures.

Gaussian Process Latent Variable Model (GPLVM),

was used to capture the task space constraints in

a low-dimensional latent representation and Tempo-

ral Difference learning (TD(0)) was applied in the

learned space. This framework was applied to bi-

manual reaching task on a full-humanoid robot (19

DOF). Experimental results demonstrated that com-

bining DR and RL significantly outperforms using RL

in the full state space. However, GPLVM relies on a

maximum-a-posteriori (MAP) estimate of the latent

space and can overfit to the training data.

Luck et al. [6] proposed a policy search frame-

work for robotics that inherently combines RL and

DR wherein the latent space learning is also based on

the reward signals during learning. The framework

relies on an Expectation-Maximization (EM) frame-

work where in the parameters for the policy repre-

sentation as well as the projection parameters for the

latent space are learned at the same time. This frame-

work was applied for standing on a single leg task for a

full-humanoid robot and was able to quickly learn an

optimal policy without requiring any initial demon-

strations. However, use of linear dimensionality re-

duction constrains the strength of the latent space

search especially for non-linear tasks such as solving

inverse kinematics.

In this study, we propose the use of Bayesian

Gaussian Process Latent Variable Model (BGPLVM)

to learn a low-dimensional latent space for encoding

clothing skills. The advantage of BGPLVM is that

it relies on variational inference to learn a posterior

distribution on the latent space rather than a MAP

estimate as in GPLVM. This avoids over fitting to

the training data, thereby, improving the generaliza-

tion capability of the model to unseen environmental

settings. We further explore various representations

to the learning of BGPLVM model specific to clothing

assistance tasks.

3 Proposed Method

In this study, we explore the suitability of us-

ing Bayesian Gaussian Process Latent Variable Model

(BGPLVM) to learn a latent space as a low dimen-

sional representation of motor skills for clothing as-

sistance. This section is divided into two parts. Sec-

tion 3·1 provides the formulation of BGPLVM and

Section 3·2 presents the application of BGPLVM in

the clothing assistance framework.

3·1 Bayesian Latent Space Learning

Bayesian Gaussian Process Latent Variable

Model (BGPLVM) is a dimensionality reduction tech-

nique proposed by Titsias et al. [4]. BGPLVM is de-

rived from the probabilistic model where the observa-

tions, Y = {yi ∈ RD}Nn=1, are assumed to be gener-

ated from latent inputs X = {xi ∈ Rq}Nn=1 through a

noisy process,

yi = f(xi) + ε, ε ∼ N (0, β−1I) (1)

The mapping function f is modeled using a Gaus-

sian Process (GP) which makes the model capable of

performing non-linear dimensionality reduction with

the use of a non-linear kernel function. The marginal

likelihood for the generative model is given by:

p(Y|X,Φ) =

D∏
d=1

N (y:,d|0,K + β−1I) (2)

where X,Φ are the unknown latent positions and hy-

per parameters for the GP mapping that need to be

inferred. K is the kernel matrix constructed from the

latent points.

In the generative model, the latent positions need

to be marginalized out for having a purely Bayesian

treatment:

p(Y|Φ) =

∫
p(Y|X,Φ)p(X)dX (3)

However, the integral becomes intractable as X ap-

pears non-linearly in the kernel covariance matrix for

a non-linear kernel function as shown in Equation (2).

Titsias et al. [4] proposed a variational inference ap-

proach to compute a tractable lower bound for the

marginalization thereby inferring a posterior distri-

bution on the latent positions rather than a MAP

estimate. Detailed derivations of the model are fur-

ther presented in [4]. For performing automatic model

selection of the latent space dimensionality, the Au-

tomatic Relevance Determination (ARD) Kernel can

be used in the GP mapping:

kard(xi,xj) = σ2
ard exp

(
−1

2

q∑
k=1

αq(xi,k − xj,k)2

)
(4)

The ARD weights αq describe the relevance of each

dimension and zero weight indicating complete irrel-

evance. Maximizing the marginal likelihood w.r.t.

these weights allows the inference of latent space di-

mensionality.

The inference for unseen test data can now be

performed through a Bayesian formulation instead of

relying on a MAP estimation of the latent space. The

predictive distribution is given by the ratio of two

marginal likelihoods, both of which can be approxi-

mated using the variational inference technique:

p(y∗|Y) =

∫
p(y∗,Y|x∗,X)p(x∗,X)dXdx∗∫

p(Y|X)p(X)dX
(5)



Fig.2 Overview of latent space controller for per-
forming clothing tasks.

Efficient computations to handle test data is further

described in [4].

3·2 Representation of Clothing Skills using
BGPLVM

Motor skills for clothing assistance lie in an high

dimensional kinematic space given by joint angle tra-

jectories of a 7 DOF dual-arm robot. The robot also

has to maintain several task space constraints such as

the coupling with a clothing article along with oper-

ating safely in close proximity to a human subject as

shown in Figure 1. These task space constraints are

difficult to be modeled in the kinematic space as they

are non-linearly related to each other. To address

these problems, we propose the use of BGPLVM for

learning a latent space that efficiently encodes cloth-

ing assistance skills. BGPLVM results in the learning

of a low-dimensional latent space through a nonlin-

ear and data-efficient mapping to the kinematic space.

Furthermore, we train the model using successful tra-

jectories of the robot performing clothing tasks so that

the resultant latent space generates robot trajecto-

ries that follow task space constraints. The Bayesian

treatment avoids over fitting to the training data and

automatic inference of the latent space dimensionality

through the use of ARD kernel.

In this study, we consider the clothing task

where a dual-arm robot clothes a soft mannequin

with a T-shirt which is initially resting on the man-

nequin’s arms. The purpose of the BGPLVM model

is to learn a latent representation X = [X1, · · · ,XN ]

from a dataset of 7-DOF dual-arm robot poses Y =

[y1, · · · ,yN ]. We represent the robot poses in two al-

ternate ways i.e. 1) Kinematic representation given by

joint angles of both 7-DOF armsDK = 14 and 2) Task

space representation given by the end-effector pose of

both robot arms which comprises the Cartesian po-

sition PX , PY , PZ ∈ R3 and orientation represented

using a quaternion OX , OY , OZ , Oω ∈ R4 forming a

14-dimensional space DT = 14. The dataset Y was

obtained from a collection of successful clothing assis-

tance demonstrations performed by the robot for vari-

ous postures of the mannequin. We set the dimension

of the latent space as q = 5, however the dimension-

ality is eventually inferred through the training of the

ARD kernel weights as explained in Section 3·1.

3·3 Latent Space Robot Controller

There can be several types of failure scenarios

when the robot performs clothing tasks. While cloth-

ing, the T-shirt collar could get stuck on the man-

nequin’s head and while unclothing, the T-shirt could

get stuck in the mannequin’s shoulder joints. To re-

cover from these failures, not only is the trajectory of

the robot important, but also the speed of execution.

Imparting these skills through kinesthetic movement

of the arms can be difficult for a bulky robot and could

lead to noisy demonstrations. To address this prob-

lem, we have implemented a real-time controller that

gets an input signal from the BGPLVM latent space.

The BGPLVM model learns a mapping from the low

dimensional latent space to the robot kinematic space

such that a trajectory of latent points generates a tra-

jectory on the dual-arm robot. This interface can be

used as a tool for Learning from Demonstration (LfD)

wherein, the necessary clothing skills are imparted to

the robot by using cursor control over the latent space

as shown in Figure 2.

4 Results

In this section, we present the results of using

BGPLVM as a representation for clothing assistance

motor skills. The experimental setup includes the

Baxter 7 DOF dual-arm robot performing clothing

tasks and a soft mannequin as the subject as shown

in Figure 1. The clothing task is to cloth the man-

nequin with a T-shirt which is initially resting on the

mannequin’s arms. The evaluation is presented in

two parts: Section 4·1 demonstrates the generaliza-

tion capability of BGPLVM to unseen environmental

settings and Section 4·2 presents the performance of

the real-time controller presented in Section 3·3.

4·1 Predictive Performance

In this experiment, the generalization capability

of BGPLVM for performing clothing tasks is evalu-

ated. The evaluation dataset contains 4 clothing trials

that were obtained for 4 different postures of the man-

nequin wherein the elevation of the arms were var-

ied forming different angles {65o, 70o, 75o, 80o} with

the mannequin’s body. The clothing trial for 75o was

left out as the test data and BGPLVM models were

trained for the remaining 3 clothing trials. Trained

models for both the joint angles (JA) and end-effector

Cartesian positions (EE) resulted in 2 dimensional la-

tent spaces. The resultant latent space for the JA

model is visualized in Figure 3. It can be seen that

smooth latent trajectories are formed for each cloth-

ing trial capturing the dynamics of performing the

task. Furthermore, a smooth latent trajectory ex-

ists for the test clothing trial as well indicating the

possibility for a reinforcement learning framework to

generalize to the new posture.



Fig.3 Latent Space of BGPLVM trained on Joint
Angle dataset of clothing tasks. Latent
points include 3 train trials and 1 test trial.

4·2 Controller Demonstration

In this section, the latent space controller pre-

sented in Section 3·3 is demonstrated. The latent

space for the controller is trained for the joint angles of

a clothing trial obtained from kinesthetic demonstra-

tion by a human. The resultant model represented the

data in a 2 dimensional latent space. Cursor control

on the latent space was able to reproduce the clothing

demonstration even when the latent trajectory was

different from the training latent points as shown in

Figure 4. The resultant latent dimensions further cap-

tured a specific aspect of the clothing motor-skills.

For example, the most significant dimension captured

the horizontal motion of the arms along the man-

nequin while maintaining the constraints for clothing.

The second dimension captured various vertical mo-

tions of pulling up the T-shirt in the beginning and

pulling it down along the torso at the end.

5 Conclusion

Motor-skills learning for robotic clothing assis-

tance task involves a high dimensional kinematic

search space and maintaining several task space con-

straints. In this study, we have presented the use

of Bayesian Gaussian Process Latent Variable Model

(BGPLVM) as a representation for encoding motor-

skills to perform clothing assistance task. The experi-

mental results indicate our method as a promising ap-

proach in combination with reinforcement learning. A

latent space representation can be learned from mul-

tiple observation spaces using Manifold Relevance De-

termination (MRD) [7] which is an extension of BG-

PLVM. Based on this flexibility, our future work will

be to learn models that explicitly incorporates visual

information of the relationship between the human

and cloth. The long term goal will be to develop a

policy search reinforcement learning framework that

Fig.4 Cursor control on BGPLVM latent space to
perform clothing task. Figure on left shows
simulation of robot pose, right top shows
robot performing clothing task and right
bottom shows cursor control in latent space.

relies on the use of BGPLVM.
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