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ABSTRACT
�e need of robotic clothing assistance in the �eld of assistive robot-
ics is growing, as it is one of the most basic and essential assistance
activities in daily life of elderly and disabled people. In this study,
we are investigating the applicability of using Dynamic Movement
Primitives (DMP) as a task parameterization model for performing
clothing assistance task. Robotic cloth manipulation task deals with
pu�ing a clothing article on both the arms. Robot trajectory varies
signi�cantly for various postures and also there can be various
failure scenarios while doing cooperative manipulation with non-
rigid and highly deformable clothing article. We have performed
experiments on so� mannequin instead of human. Result shows
that DMPs are able to generalize movement trajectory for modi�ed
posture.
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Figure 1: Setup of robotic cloth manipulation task

1 INTRODUCTION
Due to the demographic trend in developed countries, robotic assis-
tance in the �eld of elderly care in home environment is growing [2].
Although there has been a signi�cant number of research done in
this �eld, robotic clothing assistance is yet an open �eld for research.
It is one of the basic and essential assistance activities in daily life of
elderly as well as disabled people. While rigid object manipulation
with robots has mainly relied on precise robot control, deformable
objects rather require complex control scheme. Clothing assistance
is a challenging problem since robot is required to manage two
di�culties: (a) robot must do cooperative manipulation by holding
clothing article using both the arms while interacting with non-
rigid and highly deformable clothing article and (b) maintain safe
human-robot interaction with the assisted person whose posture
can vary during assistance.

Trajectory variability for clothing assistance is large for di�erent
environmental conditions. We need to parametrize the task e�-
ciently so that generalization can be acheived quickly. In this study,
we are investigating the applicability of using Dynamic Movement
Primitives (DMP) as a task parameterization model for performing
clothing assistance task. Robotic cloth manipulation task deals
with pu�ing a clothing article on both the arms. �e idea of using
DMP is inspired by the fact that DMP can learn complex task from
the demonstration [7, 8, 16] and thus reduce the manual e�orts to
design a controller from scratch or to �ne-tune various controller
parameters. We choose dual arm Baxter robot (Rethink robotics) in
this research as it is safe and �exible by design [4].

Rest of the paper is organized as follows. Section 2, gives brief
overview of related literature in this �eld. In Section 3, we intro-
duce mathematical formulation about DMP followed by describing
proposed method and its work�ow. Section 4 deals with details
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of various experiments performed and corresponding results. �e
discussion about experiments is presented in section 5. Finally we
conclude in section 6 with future directions.

2 RELATEDWORKS
�ere has been signi�cant research done in the �eld of robotic cloth-
ing assistance by using vision system. Klee et al. [11] worked on
personalized assistance for dressing a user. �e robot requests user
to move towards robot, monitors motion using vision module and
puts a hat on user once user is reachable by the robot. �ey haven’t
considered human and clothing article interaction. Yamazaki et
al. [23, 24] worked on bo�om dressing by a life-sized humanoid
robot, where they recognize the cloth state by using optical �ow
on images acquired from a single camera. �ey did not handle
large occlusions. Yamakawa et al. [22] proposed a new strategy for
dynamic manipulation of sheet-like �exible objects by a high-speed
robot system. �e proposed system learns necessary motor skills
from demonstration performed by a human subject. �ey worked
on fast cloth state tracking but it is not related to robotic clothing
assistance.

Robotic cloth handling is challenging. Unlike rigid object ma-
nipulation using robots, which has mainly relied on precise robot
control, deformable objects rather require complex control scheme.
Many researchers have used vision information with combination
of techniques such as motor skills learning using Reinforcement
Learning. Colomé et al. [3] proposed a framework for Reinforce-
ment Learning of robotic tasks in non-rigid environments by in-
corporating friction based model. Gao et al. [5, 6] have focused
on user upper-body modeling for personalized dressing by using
top-view depth camera with the help of randomized decision forests
to estimate user pose. �ey proposed an online iterative path opti-
mization method to enable Baxter robot to assist human in wearing
a sleeveless jacket. Another interesting work by Kapusta et al. [10]
is focused towards designing a controller inspired from data-driven
haptic perception. �ey classi�ed the forces measured at robot’s
end-e�ector by using hidden Markov models and performed cloth-
ing task using hospital gown. �eir focus was to classify force
data for haptic perception with high accuracy. Koganti et al. [12]
proposed a framework for o�ine learning of cloth dynamics model
using Gaussian Process Latent Variable Models (GP-LVM) by incor-
porating motion capture data and applying this model for online
tracking of human-cloth relationship using a depth sensor. �ey
showed that shared GP-LVM is able to learn reliable motion models
of the T-shirt state for clothing task. Representing cloth state in
low-dimensional �eld by using topology coordinates is another im-
pressive work by Tamei et al. [17]. �ey proposed Reinforcement
Learning framework and demonstrated that robot quickly learns
a suitable arm motion for pu�ing T-shirt into the mannequin’s
head. Another exciting work was done by Monsó et al. [13], where
they proposed a probabilistic planner, based on Partially Observ-
able Markov Decision Process (POMDP) approach, for reducing
the inherent uncertainty of cloth sorting (isolation/extraction) task.
�eir approach relaxes the precision requirements of robot vision
and manipulation.

�e problem of robotic clothing assistance not only depends
on tracking cloth dynamics but also on motor skills required to
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Figure 2: ψ (s ) activations and weighted summation of Gaus-
sians

perform the task. A combination of such techniques is encouraged.
However, we see that there has been a large gap when compared
to the practical use cases in elderly care. �e most important point
should be learning rate of the task. We believe that Learning from
Demonstration frameworks are quick to learn in cases which involve
complex task speci�c dynamics. �e problem of pu�ing sleeveless
T-shirt into the arms of mannequin is close to the practical use case.
�erefore, we are pu�ing our e�orts to solve it by investigating the
generalization ability of DMP to varying postures of mannequin.

3 METHOD
Robotic cloth manipulation task deals with pu�ing a clothing ar-
ticle on both the arms. We have chosen DMP framework to learn
this complex task from demonstration and and used a dual arm
Baxter robot in this research. Following subsections explain about
underlying DMP framework followed by the proposed method.

3.1 Dynamic Movement Primitives
Dynamic Movement Primitives (DMP) aims at designing controller
for learning and generalization of motor skills by learning from
demonstration [7]. �e controller is based on nonlinear dynamical
system and uses Locally Weighted Regression (LWR) techniques to
learn complex, discrete or rhythmic movements demonstrated by a
human subject [9]. �e controller can be considered to be discrete
or rhythmic pa�ern generator which can replay and modulate the
learned movements, while being robust against perturbations.

�e basic idea behind DMP formulation is to use an analytically
well-understood dynamical system and add a nonlinear term, so
that it produces the desired behavior [8]. Formally, it is de�ned by
a damped spring model as below:
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Figure 3: Work�ow of robotic cloth manipulation task. Initially, a kinesthetic demonstration is performed with the robot
controlled in gravity compensation mode. �is demonstration is recorded and parameterized by DMP. Later on, posture of
the mannequin is changed. Accordingly start and goal parameter of initial DMP are modi�ed. Now, the modi�ed DMP can
accommodate new posture.

τv̇ = K (д − x ) − Dv − K (д − x0)s + K f (s ) (1)
τ ẋ = v (2)

�e term x and v are position and velocity of the system respec-
tively, x0 and д are start and goal position, τ is a scaling term, K
acts like spring constant and D is damping factor chosen in a way
such that system is critically damped. �e term K (д − x0)s is nec-
essary for avoiding sudden jump at the beginning of a movement.
�e nonlinear function f , which is also called as forcing term is
a non-linear function to be learned to allow complex movements.
�e forcing function f is chosen as

f (s ) =
Σiwiψi (s )

Σiψi (s )
s (3)

whereψi is de�ned as Gaussian basis function as

ψi = exp
(
−hi (s − ci )

2) (4)
where hi and ci are constants that determine, respectively, width

and centers of basis functions. wi represents weight de�ned for
each Gaussian. Forcing function f depends on phase variable s .
Phase variable s starts from 1 and monotonically decreases to 0,
de�ned by equation below:

τ ṡ = −αs (5)
where α is a positive gain term. Our goal is to design a forcing

function that can learn from demonstration and allows us to scale
the movement de�ned by goal state д. So that the system can follow
a speci�ed path. �e forcing term can be rede�ned as:

ftarдet (s ) =
Dv + τv̇

K
− (д − x ) + (д − x0)s (6)

where desired acceleration v̇ (t ) can be calculated by taking sec-
ond derivative of the positional data recorded from demonstration
as

v̇ (t ) =
∂v

∂t
=
∂2x

∂t2 (7)

�e forcing function in eq. (3) is comprised of weighted summa-
tion of Gaussian that are going to be activated as system converges
to goal as shown in �gure 2. We want that forcing function matches
the desired trajectory. In other words, we want ftarдet to be as
close as possible of f as wri�en below:

J =
∑
s

(
ftarдet (s ) − f (s )

)2 (8)

�is ends by calculating weight parameters across Gaussians.
Optimization methods such as LWR [19] can be used, so that forcing
function matches desired trajectory. �is way DMP can be made to
imitate desired path [14].

3.2 Robotic cloth manipulation using DMP
In this section, we provide brief overview of our system. As per the
formulation described in section 3.1, DMP can learn from demon-
stration. �erefore we start by performing a kinesthetic demonstra-
tion with the robot controlled in gravity compensation mode as
shown in �gure 3. �is is referred as “Teaching Phase”, since in this
phase, we are teaching skills to robot to perform the task. During
the demonstration, pose trajectory of end-e�ector is recorded using
Baxter API and stored in a �le. �e term pose collectively refers to
position as cartesian position p = (px ,py ,pz ) ∈ R

3 and orientation
as quaternion q = (qx ,qy ,qz ,qw ) ∈ R4. Once the demonstration is
�nished, DMP is parameterized using recorded trajectory �le. �is
is termed as “Learn Trajectory” phase. �e parameterized DMP
can represent all the characteristics of original trajectory. Here,
three DMP systems, one for each coordinate axis i.e., x , y and z are
initialized for one arm. In this way, we have total six DMP systems,
which can control both the arms of Baxter robot. �e orientation
of the end-e�ector is not considered as a part of DMP system and
kept same as it was at the time of “Teaching Phase”. In “Testing
Phase”, we change the posture of mannequin by changing the angle
of inclination as shown in �gure 4. At this point, we use Kinect Sen-
sor to get the 3D coordinates of wrist and shoulder of mannequin
by clicking on real-time point cloud acquired using Kinect Sensor.
We change start and goal parameter of DMP system by using this
information. In this way, we have modi�ed DMP system, which can
adapt modi�ed posture referred as “DMP Generalization”. Before
using Kinect Sensor, it is extremely important to do Kinect-Baxter
calibration, so that 3D coordinates are translated from Kinect space
to Baxter space. For Kinect-Baxter calibration, we collect a dataset
of points observed by Baxter and Kinect. �en we use absolute
orientation calibration [18] to align the frames of reference.
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Figure 4: Angle of Inclinationmeasures the bending of arms
w.r.t. horizontal line in two-dimensional space.

We have divided the complete trajectory into two parts: (a) �e
reaching part, which refers to the trajectory starts from home posi-
tion of robot and ends till �ngers of mannequin (b) the clothing part,
which refers to the trajectory starts from �ngers of mannequin and
reaches up to shoulder nearly. �e reaching part can be performed
through simple position based controller but for the clothing part,
we need to use DMP system since this part changes drastically
between postures and can be prone to failures.

4 EXPERIMENTS
Robotic cloth manipulation task contains a dual arm humanoid
robot Baxter. Setup of our system is shown in �gure 1. We choose
so� mannequin instead of a human for this experiment. Both the
arms of mannequin are open and given support by a metallic stand,
to avoid falling down the arms. Mannequin is positioned in such a
way so that it resides within limits of workspace of Baxter robot.
Both the arms of mannequin are facing towards robot. A Kinect
V2 [1] sensor is mounted on LCD display of Baxter robot. Kinect
sensor can see the mannequin and clothing article and provides
depth information, which is necessary for mannequin tracking. �e
clothing article is put in the arms of Baxter robot manually before
starting experiment.

Baxter robot is connected to a computer directly using Ethernet
cable. It is controlled using Robot Operating System (ROS) [15], one
of the widely used tools by the researchers in robotics community.
We used Baxter robot’s API, which is available and supported by
ROS to command the robot. Kinect sensor is controlled by open
source Kinect API for ROS [20, 21]. We performed following two ex-
periments to validate our approach: (a) Clothing task using position
DMP (b) Failure detection using end-e�ector forces.

4.1 Clothing task using position DMP
�e aim of this experiment is to put sleeveless T-shirt on both the
arms of mannequin by using DMP system. We use position data to
initialize DMP system, which is being used in this task. �e posture
of mannequin is changed. At this point, we use Kinect Sensor to
get 3D coordinates of wrist and shoulder of mannequin. Now we
change start and goal parameter of initial DMP system by using
this information. Modi�ed DMP can be acquired by rolling out
initial DMP system as described in section 3.1.
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Figure 5: Le� arm trajectory of Baxter. �e unit of axis is in
meter. �e demonstration trajectory is noisy due to sensor
noise. �e �uctuations in trajectory are dominating across
y axis. However y axis is least spread among all three axis.

In this experiment, the DMP was modi�ed to accommodate new
posture by changing start and goal parameter of initial DMP sys-
tem. �e generated trajectory from modi�ed DMP system was
then run on Baxter robot as shown in �gure 5. Newly generated
DMP trajectory (shown in red color) was not only found well suited
and capable of performing clothing task but also smoother com-
pared to demonstrated trajectory (shown in blue color). A video
demonstration of this experiment can be seen at YouTube1.

To evaluate this experiment, we performed it 9 times for each
angle of inclination and monitored trajectory generated by DMP
system. We de�ned angle of inclination as the angle between arm of
mannequin and horizontal axis. �e angle of inclination is de�ned
in clockwise direction, hence it is +ve when arms are inclined up-
ward, similarly it is -ve when arms are inclined downward as shown
in �gure 4. It was changed by keeping arms at various heights. �e
angle of inclination for horizontal orientation is refereed as 0 de-
gree. For each angle of inclination, we performed the experiment 6
times. We then changed the angle of inclination by 5 degree step
size and followed the same steps as described above. We stopped
this experiment, once we noticed a huge degradation in success
rate, such as success rate close to zero. �e accuracy measurement
is shown in �gure 6. It was observed that DMP system was able
to generate the appropriate trajectory for a range of 20◦ and it
never failed in this range. However, as we keep on going far away
from the original posture, success rate starts declining and �nally
reached to 0.

4.2 Failure detection using end-e�ector forces
�is experiment is designed to deal with failure cases. �ere can
be many failure cases during the task, such as clothing article gets
stuck into the �ngers, sleeve ge�ing stuck on the arms, sleeve is
not entering in the arm but entirely missing etc, as shown in �gure
1h�p://youtu.be/Rb2JePazJjk

http://youtu.be/Rb2JePazJjk


Robotic cloth manipulation for clothing assistance task using Dynamic Movement PrimitivesAIR ’17, June 28-July 2, 2017, New Delhi, India

15 10 5 0 5 10 15 20 25
Angle of Inclination ( ◦ )

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Su
cc

es
s 

Ra
te

Figure 6: Accuracy measurement

8. In this experiment, we are using forces being applied on the
end-e�ector of Baxter robot to detect failure scenarios. Appropriate
action can be taken once the failure is detected.

�e clothing task has to deal with complex dynamics including
manipulation of clothing article. Clothes are non-rigid, �exible
and highly deformable objects, making the task more di�cult to
perform. During the task, we observed forces being applied at both
the end-e�ector of Baxter robot. Trajectories were monitored and
categorized into two success and failure. �e mean of these two
categories is calculated individually and plo�ed as shown in �gure
7. Force value is the norm of force applied in all three cartesian
directions. �is is the average pro�le over 6 success and failure
trajectories for di�erent postures of le� arm of mannequin.

It is clearly visible from the �gure 7 that the applied forces are
very di�erent in nature in both the cases. Both of these forces
start increasing from the beginning. However, forces in case of
failure are much higher than that of success. Hence one can easily
di�erentiate and detect failures by using this information.

5 DISCUSSION
�e clothing assistance task deals with manipulation of highly
deformable clothing article, which inherits complex dynamics. Fail-
ure can be detected by observing end-e�ector forces. �e shape
of clothing article keeps on changing during each trail, which af-
fects the task se�ings. �at is why, a trajectory which was able to
perform the task successfully, may not work later. We noticed that
there can be many failure scenarios such as clothing article gets
stuck into the �ngers, sleeve is ge�ing stuck on the arms, sleeve is
not entering in the arm and entirely missing etc. Proposed failure
detection method by using force information can detect failures
when clothing article is stuck tightly. �e other reason of failure
can reside in position based DMP system. �e orientation plays
a major role in this task, however DMP system was initialized by
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Figure 7: Failure detection using end-e�ector forces
recorded during the task. Each trajectory is computed by
calculating the mean. �e force value is norm of force ap-
plied in all three cartesian directions.

Figure 8: Various failure scenarios showing how a clothing
article is di�cult to manipulate because of inherent non-
rigid and �exible nature.

position data while ignoring the orientation of end-e�ector. �e
orientation was kept same as it was in demonstrated trajectory.

6 CONCLUSIONS
�is paper presents an approach for robotic cloth manipulation for
clothing assistance task using Dynamic Movement Primitives. A
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dual arm Baxter robot, so� mannequin, and very thin sleeveless
T-shirt were used in the task. We have also presented an approach
for failure detection using forces being applied on end-e�ector of
the robot. We have used the Baxter APIs in order to get the forces,
which are calculated by Baxter Dynamics Module. �ough raw
forces were very noisy in nature, but a�er applying median �lter
most of the noise was eliminated properly.

We plan to extend our research to make the approach more robust
by adding visual information and force information with DMP
system in future. Also, there is a need for designing an adaptive
controller for real-time tracking of mannequin to adapt and detect
various failure scenarios. DMP system also needs to be improved to
incorporate orientation information of end-e�ector. �erefore, in
the future, a combination of robot vision and force data can provide
be�er estimation of cloth state for the task.
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